Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.578

Crystallographic report

The [bis(η^5 -methylcyclopentadienyl)titanium(IV)bis(N-methylglycine)] dichloride

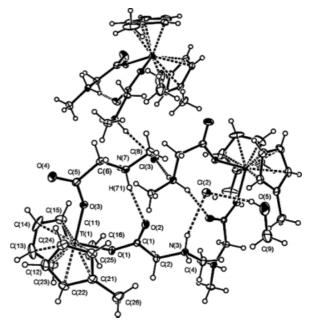
Radim Bína^{1*}, Ivana Císařová² and Ivan Pavlík¹

¹Research Centre "New Inorganic Compounds and Advanced Materials", University of Pardubice, Nam. Cs. Legii 565, 532 10 Pardubice, Czech Republic

Received 21 July 2003; Accepted 15 October 2003

The crystal network of $[Cp_2'Ti(N-CH_3-Gly)_2]^{2+}[Cl^-]_2$ $(Cp'=(CH_3)C_5H_4)$ complex, which crystallizes as a solvate with CH₃OH, is built up with discrete cationic units connected through intermolecular $H \cdots Cl$ bonds. The α -amino acid ligands are attached through an intramolecular $H \cdots O$ bond within one cationic unit. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; titanium; α -amino acids


COMMENT

The very first example of the crystal structure of a DMTDC- α -amino acid complex is reported (DMTDC = $Cp_2'TiCl_2$, where $Cp' = \eta^5 - (CH_3)C_5H_4$). The α -amino acid ligands are coordinated to titanium atom exclusively 'via' the oxygen of the carboxylic group. The coordinated carboxyl group has similar types of C-O bond length as found in esters: O(1)-C(1) 1.2901(19), C(1)-O(2) 1.222(3), O(3)-C(5) 1.293(2), C(5)–O(4) 1.216(2) Å.^{1,2} Neighbouring cationic units are attached through $H \cdots O$ and $H \cdots Cl$ bonds within the crystal cell (Fig. 1). A close intramolecular H···O bond between the oxygen of the carboxylic group of one ligand and the ammonium group hydrogen of the second one represents a unique example of such interaction for this class of compounds.³⁻⁵ Only a slight effect on the titanium-ligand bonding angles was observed, regarding exchange of chloride ligands in the cis-position for α -amino acid ligands; Cp'(1)(centroid)-Ti-Cp'(2)(centroid), L-Ti-L $(L = Cl \text{ or } N\text{-}CH_3\text{-}Gly)$: complex 133.06(4), 95.16(5)°; DMTDC 130.2, 93.15(8)°.6

EXPERIMENTAL

The DMTDC (1.000 g, 3.61 mmol), N-CH₃-Gly (0.643 g, 7.22 mmol) and distilled water (0.15 ml, 8.33 mmol) were stirred in 10 ml of dry

*Correspondence to: Radim Bína, Research Centre "New Inorganic Compounds and Advanced Materials", University of Pardubice, Nam. Cs. Legii 565, 532 10 Pardubice, Czech Republic. E-mail: bina@lachema.cz or radim.bina@upce.cz

Figure 1. Molecular structure of $[Cp_2'Ti(N-Me-Gly)_2]^{2+}[Cl^-]_2$, cation · · · anion interaction of three cationic units. Key geometric parameters: Ti-Cp'(1)(centroid) 2.0565(10), Ti-Cp'(2)(centroid) 2.0544(9), Ti-O(1) 1.9791(12), Ti-O(3) 1.9430(12), O(1)-C(1) 1.290(2), C(1)-O(2) 1.221(2), O(3)-C(5) 1.293(2), C(5)-O(4) 1.216(2); Cp'(1)(centroid)-Ti-Cp'(2)(centroid) 133.06(4), O(1)-Ti-O(3) 95.16(5), O(1)-C(1)-O(2) 126.79 (15), O(3)-C(5)-O(4) 125.78(17)°; H bonds: $H(5)\cdots CI(2)$ 2.40(3), H(31) · · · Cl(3) 2.20 (2), H(72) · · · Cl(3) 2.20(2), H(71) · · · O(2) 2.01(2) Å.

²Charles University, Faculty of Science, Hlavova 2030, Albertov 6, 12843 Prague, Czech Republic

methanol at 20 °C under an argon atmosphere (24 h) and mixed with 30 ml of dry Et₂O/CH₂Cl₂ (5:1 v/v) for 1 h. Precipitated material was separated, washed with dry $CH_2Cl_2~(3\times 5~\text{ml})$ and dried in vacuum. Crystal preparation: 100 mg of solid was dissolved in a minimal volume of dry methanol, filtered and cooled to $0\,^{\circ}\text{C}$. Yield: 1.516 g (92.3%), analytically pure product; m.p. >143 °C (dec.), hydroscopic orange solid, solvate with CH₃OH. IR (KBr, cm⁻¹): 3440 vs,b ($\nu_{as}(NH_3)$), 2984w + 2971w + 2931s (B₂, B₁, A₁ ν (CH₃)), 1665 + 1659 vs ($\nu_{as}(COO)$), 1502 vs (ν (C-CH₃)), 1379 m ($\nu_{s}(COO)$), 1254 + 937 m (ν (C-C), Cp). ¹H NMR (ppm): 2.09 (s, C₅H₄-CH₃, 6H), 2.76 (s, N-CH₃, 6H), 3.19 (CH₃OH), 3.79 (s, α -CH₂, 4H), 6.40 and 6.75 (2 × m, 8H, C₅H₄, in ascending order: $\frac{1}{3}$ CH + \frac $H_3 + H_4$; $J^3(H_2H_3) = 4.84 \text{ Hz}$, $J^4(H_2H_4) = 2.42 \text{ Hz}$). ¹³C NMR (ppm): 18.59 (CH₃), 36.81 (*N*-CH₃), 53.91 (CH₂), 121.28, 125.81, 141.30 (C₅H₄), 174.31 (COO). ¹⁴N NMR (ppm): -335.68. Intensity data were collected at 150 K on Nonius Kappa CCD area detector diffractometer for a red block $0.15 \times 0.20 \times 0.35$ mm³. $C_{18}H_{28}N_2O_4\text{Ti-2}(\text{Cl})\cdot\text{CH}_4\text{O}$, M = 487.24, centric, orthorhombic Pbca no. 61, a = 9.5310(3), b = 18.2980(5), c = 26.6350(5) Å, V = 4645.1(2) Å³, Z = 8, $D_{calc} = 1.3934$ g cm⁻³, 5307 unique data ($\theta_{max} = 27.5^{\circ}$), R = 0.0353 (all data), $\omega R = 0.08$ (all data). Programs used: SHELXL 97, PLATON for Windows v.1.05, ORTEP III v.1.0.3. CCDC deposition number: 205636

REFERENCES

- 1. Gillespie RJ, Hargittai RJ. I. The VSEPR Molecular Geometry. Allyn and Bacon: Boston, MA, 1991.
- 2. Johnson DA. Some Thermodynamic Aspects of Inorganic Chemistry. Cambridge University Press: Cambridge, UK, 1982.
- 3. Klapötke TM, Köpf H, Tornieport-Oetting IC. Organometallics 1994; **13**: 3628.
- 4. Tornieport-Oetting IC. Organometallics 1995; 14: 1632.
- 5. Mokdsi G, Harding MM. J. Organometal. Chem. 1998; 565: 29.
- 6. Petersen JL, Lawrence FD. J. Am. Chem. Soc. 1975; 97: 6422.